When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The substrate concentration midway between these two limiting cases is denoted by K M. Thus, K M is the substrate concentration at which the reaction velocity is half of the maximum velocity. [2] The two important properties of enzyme kinetics are how easily the enzyme can be saturated with a substrate, and the maximum rate it can achieve.

  3. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    The second step with OH − is much faster, so the overall rate is independent of the concentration of OH −. In contrast, the alkaline hydrolysis of methyl bromide (CH 3 Br) is a bimolecular nucleophilic substitution (S N 2) reaction in a single bimolecular step. Its rate law is second-order: r = k[R−Br][OH −].

  4. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    For a typical second-order reaction with rate equation = [] [], if the concentration of reactant B is constant then = [] [] = ′ [], where the pseudo–first-order rate constant ′ = []. The second-order rate equation has been reduced to a pseudo–first-order rate equation, which makes the treatment to obtain an integrated rate equation much ...

  5. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    When studying urease at about the same time as Michaelis and Menten were studying invertase, Donald Van Slyke and G. E. Cullen [29] made essentially the opposite assumption, treating the first step not as an equilibrium but as an irreversible second-order reaction with rate constant +. As their approach is never used today it is sufficient to ...

  6. Pharmacokinetics - Wikipedia

    en.wikipedia.org/wiki/Pharmacokinetics

    That is, the closer time points are, the closer the trapezoids reflect the actual shape of the concentration-time curve. The number of time points available in order to perform a successful NCA analysis should be enough to cover the absorption, distribution and elimination phase to accurately characterize the drug.

  7. Plateau principle - Wikipedia

    en.wikipedia.org/wiki/Plateau_Principle

    Half-life has units of time, and the elimination rate constant has units of 1/time, e.g., per hour or per day. An equation can be used to forecast the concentration of a compound at any future time when the fractional degration rate and steady state concentration are known:

  8. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]

  9. Elimination rate constant - Wikipedia

    en.wikipedia.org/wiki/Elimination_rate_constant

    The solution of this differential equation is useful in calculating the concentration after the administration of a single dose of drug via IV bolus injection: = C t is concentration after time t; C 0 is the initial concentration (t=0) K is the elimination rate constant