When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Closed graph property - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_property

    Closed graph theorems are of particular interest in functional analysis where there are many theorems giving conditions under which a linear map with a closed graph is necessarily continuous. If f : X → Y is a function between topological spaces whose graph is closed in X × Y and if Y is a compact space then f : X → Y is continuous.

  3. Graph continuous function - Wikipedia

    en.wikipedia.org/wiki/Graph_continuous_function

    Function : is graph continuous if for all there exists a function : such that ((),) is continuous at .. Dasgupta and Maskin named this property "graph continuity" because, if one plots a graph of a player's payoff as a function of his own strategy (keeping the other players' strategies fixed), then a graph-continuous payoff function will result in this graph changing continuously as one varies ...

  4. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    So, if the open mapping theorem holds for ; i.e., is an open mapping, then is continuous and then is continuous (as the composition of continuous maps). For example, the above argument applies if f {\displaystyle f} is a linear operator between Banach spaces with closed graph, or if f {\displaystyle f} is a map with closed graph between compact ...

  5. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The Borel graph theorem, proved by L. Schwartz, shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis. [10] Recall that a topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space ...

  6. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    A chordal graph, a special type of perfect graph, has no holes of any size greater than three. The girth of a graph is the length of its shortest cycle; this cycle is necessarily chordless. Cages are defined as the smallest regular graphs with given combinations of degree and girth.

  7. Hemicontinuity - Wikipedia

    en.wikipedia.org/wiki/Hemicontinuity

    A set-valued function that is both upper and lower hemicontinuous is said to be continuous in an analogy to the property of the same name for single-valued functions. To explain both notions, consider a sequence a of points in a domain, and a sequence b of points in the range.

  8. Möbius ladder - Wikipedia

    en.wikipedia.org/wiki/Möbius_ladder

    In graph theory, the Möbius ladder M n, for even numbers n, is formed from an n-cycle by adding edges (called "rungs") connecting opposite pairs of vertices in the cycle. It is a cubic, circulant graph, so-named because (with the exception of M 6 (the utility graph K 3,3), M n has exactly n/2 four-cycles [1] which link together by their shared edges to form a topological Möbius strip.

  9. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).