Search results
Results From The WOW.Com Content Network
At the cathode (C), water is reduced to hydroxide and hydrogen gas. The net process is the electrolysis of an aqueous solution of NaCl into industrially useful products sodium hydroxide (NaOH) and chlorine gas. Saturated brine is passed into the first chamber of the cell.
The Downs cell uses a carbon anode and an iron cathode.The electrolyte is sodium chloride that has been heated to the liquid state. Although solid sodium chloride is a poor conductor of electricity, when molten the sodium and chloride ions are mobilized, which become charge carriers and allow conduction of electric current.
The Castner–Kellner process is a method of electrolysis on an aqueous alkali chloride solution (usually sodium chloride solution) to produce the corresponding alkali hydroxide, [1] invented by American Hamilton Castner and Austrian Carl Kellner in the 1890s.
At the cathode (C), water is reduced to hydroxide and hydrogen gas. The net process is the electrolysis of an aqueous solution of NaCl into industrially useful products sodium hydroxide (NaOH) and chlorine gas.
Chlorine can be manufactured by the electrolysis of a sodium chloride solution , which is known as the Chloralkali process. The production of chlorine results in the co-products caustic soda (sodium hydroxide, NaOH) and hydrogen gas (H 2). These two products, as well as chlorine itself, are highly reactive.
Pure water has a charge carrier density similar to semiconductors [12] [page needed] since it has a low autoionization, K w = 1.0×10 −14 at room temperature and thus pure water conducts current poorly, 0.055 μS/cm. [13] Unless a large potential is applied to increase the autoionization of water, electrolysis of pure water proceeds slowly ...
), and produces chlorine (Cl 2) gas. However, at the cathode, instead of sodium ions being reduced to sodium metal, water molecules are reduced to hydroxide ions (OH −) and hydrogen gas (H 2). The overall result of the electrolysis is the production of chlorine gas, hydrogen gas, and aqueous sodium hydroxide (NaOH) solution.
Operation principle of NaCl electrolysis cell. The basis of the mixed oxidant production cell is electrolysis of a water solution of sodium chloride. For producing a mixed oxidants solution, different types of electrolysis cells such as a membrane cell or a standard contact cell (both unipolar and bipolar) are used. [9]