Search results
Results From The WOW.Com Content Network
This aspect is even much more pronounced when interpolation is needed at several locations inside the same cube. In this case, the matrix is used once to compute the interpolation coefficients for the entire cube. The coefficients are then stored and used for interpolation at any location inside the cube.
In mathematics, Arnold's cat map is a chaotic map from the torus into itself, named after Vladimir Arnold, who demonstrated its effects in the 1960s using an image of a cat, hence the name. [1] It is a simple and pedagogical example for hyperbolic toral automorphisms .
The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [5] [6] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [7] or they can be used to build a pointer based quadtree.
The above operations can be visualized as follows: First we find the eight corners of a cube that surround our point of interest. These corners have the values c 000 {\displaystyle c_{000}} , c 100 {\displaystyle c_{100}} , c 010 {\displaystyle c_{010}} , c 110 {\displaystyle c_{110}} , c 001 {\displaystyle c_{001}} , c 101 {\displaystyle c ...
In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.
Originally, spline was a term for elastic rulers that were bent to pass through a number of predefined points, or knots. These were used to make technical drawings for shipbuilding and construction by hand, as illustrated in the figure. We wish to model similar kinds of curves using a set of mathematical equations.
The transfinite interpolation method, first introduced by William J. Gordon and Charles A. Hall, [2] receives its name due to how a function belonging to this class is able to match the primitive function at a nondenumerable number of points. [3] In the authors' words:
A bilinear map is a function: such that for all , the map (,) is a linear map from to , and for all , the map (,) is a linear map from to . In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed.