When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    A direct formula for the conversion from a quaternion to Euler angles in any of the 12 possible sequences exists. [2] For the rest of this section, the formula for the sequence Body 3-2-1 will be shown. If the quaternion is properly normalized, the Euler angles can be obtained from the quaternions via the relations:

  3. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  4. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. [ 1 ] They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in three dimensional linear algebra .

  5. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  6. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    The rotation is described by four Euler parameters due to Leonhard Euler. The Rodrigues' rotation formula (named after Olinde Rodrigues ), a method of calculating the position of a rotated point, is used in some software applications, such as flight simulators and computer games .

  7. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    The field of complex numbers is also isomorphic to three subsets of quaternions.) [22] A quaternion that equals its vector part is called a vector quaternion. The set of quaternions is a 4-dimensional vector space over the real numbers, with { 1 , i , j , k } {\displaystyle \left\{1,\mathbf {i} ,\mathbf {j} ,\mathbf {k} \right\}} as a basis ...

  8. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Now every quaternion component appears multiplied by two in a term of degree two, and if all such terms are zero what is left is an identity matrix. This leads to an efficient, robust conversion from any quaternion – whether unit or non-unit – to a 3 × 3 rotation matrix. Given:

  9. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    The quaternion formulation of the composition of two rotations R B and R A also yields directly the rotation axis and angle of the composite rotation R C = R B R A. Let the quaternion associated with a spatial rotation R is constructed from its rotation axis S and the rotation angle φ this axis. The associated quaternion is given by,