When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve. The use of the flow coefficient offers a standard method of comparing valve capacities and sizing valves for specific applications that is ...

  3. Hydraulic clearance - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_clearance

    Leakage in narrow clearance, spool valve. Hydraulic clearance. Flow in narrow clearances are of vital importance in hydraulic system component design. The flow in a narrow circular clearance of a spool valve can be calculated according to the formula below if the height is negligible compared to the width of the clearance, such as most of the clearances in hydraulic pumps, hydraulic motors ...

  4. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.

  5. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .

  6. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    In hypersonic flow, the pressure coefficient can be accurately calculated for a vehicle using Newton's corpuscular theory of fluid motion, which is inaccurate for low-speed flow and relies on three assumptions: [5] The flow can be modeled as a stream of particles in rectilinear motion; Upon impact with a surface, all normal momentum is lost

  7. Control valve - Wikipedia

    en.wikipedia.org/wiki/Control_valve

    A control valve is a valve used to control fluid flow by varying the size of the flow passage as directed by a signal from a controller. [1] This enables the direct control of flow rate and the consequential control of process quantities such as pressure , temperature , and liquid level.

  8. Prony equation - Wikipedia

    en.wikipedia.org/wiki/Prony_equation

    where h f is the head loss due to friction, calculated from: the ratio of the length to diameter of the pipe L/D, the velocity of the flow V, and two empirical factors a and b to account for friction. This equation has been supplanted in modern hydraulics by the Darcy–Weisbach equation, which used it as a starting point.

  9. Hydraulic head - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_head

    In fluid dynamics, head is a concept that relates the energy in an incompressible fluid to the height of an equivalent static column of that fluid. From Bernoulli's principle, the total energy at a given point in a fluid is the kinetic energy associated with the speed of flow of the fluid, plus energy from static pressure in the fluid, plus energy from the height of the fluid relative to an ...