When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. LP-type problem - Wikipedia

    en.wikipedia.org/wiki/LP-type_problem

    The discovery of linear time algorithms for linear programming and the observation that the same algorithms could in many cases be used to solve geometric optimization problems that were not linear programs goes back at least to Megiddo (1983, 1984), who gave a linear expected time algorithm for both three-variable linear programs and the ...

  3. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  4. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    Written in C++ and published under an MIT license, HiGHS provides programming interfaces to C, Python, Julia, Rust, R, JavaScript, Fortran, and C#. It has no external dependencies. A convenient thin wrapper to Python is available via the highspy PyPI package. Although generally single-threaded, some solver components can utilize multi-core ...

  5. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    API to MATLAB and Python. Solve example Linear Programming (LP) problems through MATLAB, Python, or a web-interface. CPLEX: Popular solver with an API for several programming languages, and also has a modelling language and works with AIMMS, AMPL, GAMS, MPL, OpenOpt, OPL Development Studio, and TOMLAB. Free for academic use. Excel Solver Function

  6. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    For example, if is non-basic and its coefficient in is positive, then increasing it above 0 may make larger. If it is possible to do so without violating other constraints, then the increased variable becomes basic (it "enters the basis"), while some basic variable is decreased to 0 to keep the equality constraints and thus becomes non-basic ...

  7. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    Each such problem is the subproblem obtained by dropping a sequence of variables , …, from the original problem, along with the constraints containing them. After the problem on variables x i + 1 , … , x n {\displaystyle x_{i+1},\ldots ,x_{n}} is solved, its optimal cost can be used as an upper bound while solving the other problems,

  8. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Two 0–1 integer programs that are equivalent, in that they have the same objective function and the same set of feasible solutions, may have quite different linear programming relaxations: a linear programming relaxation can be viewed geometrically, as a convex polytope that includes all feasible solutions and excludes all other 0–1 vectors ...

  9. Lagrangian relaxation - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_relaxation

    Of particular use is the property that for any fixed set of ~ values, the optimal result to the Lagrangian relaxation problem will be no smaller than the optimal result to the original problem. To see this, let x ^ {\displaystyle {\hat {x}}} be the optimal solution to the original problem, and let x ¯ {\displaystyle {\bar {x}}} be the optimal ...