Search results
Results From The WOW.Com Content Network
An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J.
which illustrates the kinetic energy is in general a function of the generalized velocities, coordinates, and time if the constraints also vary with time, so T = T(q, dq/dt, t). In the case the constraints on the particles are time-independent, then all partial derivatives with respect to time are zero, and the kinetic energy is a homogeneous ...
This illustrates that kinetic energy is also stored in rotational motion. Several mathematical descriptions of kinetic energy exist that describe it in the appropriate physical situation. For objects and processes in common human experience, the formula 1 / 2 mv 2 given by classical mechanics is suitable.
The motion is simplified in the case of an axisymmetric body, in which the moment of inertia is the same about two of the principal axes. These cases include rotation of a prolate spheroid (the shape of an American football), or rotation of an oblate spheroid (the shape of a flattened sphere). In this case, the angular velocity describes a cone ...
Trevithick's 1802 steam locomotive, which used a flywheel to evenly distribute the power of its single cylinder. A flywheel is a mechanical device that uses the conservation of angular momentum to store rotational energy, a form of kinetic energy proportional to the product of its moment of inertia and the square of its rotational speed.
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is
The (Newtonian) kinetic energy of a particle of mass m, velocity v is given by = | | = (+ +), where v x, v y and v z are the Cartesian components of the velocity v.Here, H is short for Hamiltonian, and used henceforth as a symbol for energy because the Hamiltonian formalism plays a central role in the most general form of the equipartition theorem.
For extended objects composed of many particles, the kinetic energy of the composite body is the sum of the kinetic energies of the particles. The work–energy theorem states that for a particle of constant mass m , the total work W done on the particle as it moves from position r 1 to r 2 is equal to the change in kinetic energy E k of the ...