Search results
Results From The WOW.Com Content Network
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
A Euclidean minimum spanning tree, for a set of points in the Euclidean plane or Euclidean space, is a system of line segments, having only the given points as their endpoints, whose union includes all of the points in a connected set, and which has the minimum possible total length of any such system.
The quality of the tree is measured in the same way as in a graph, using the Euclidean distance between pairs of points as the weight for each edge. Thus, for instance, a Euclidean minimum spanning tree is the same as a graph minimum spanning tree in a complete graph with Euclidean edge weights.
If is edge-unweighted every spanning tree possesses the same number of edges and thus the same weight. In the edge-weighted case, the spanning tree, the sum of the weights of the edges of which is lowest among all spanning trees of , is called a minimum spanning tree (MST). It is not necessarily unique.
For example, the minimum spanning tree of the graph associated with an instance of the Euclidean TSP is a Euclidean minimum spanning tree, and so can be computed in expected O(n log n) time for n points (considerably less than the number of edges). This enables the simple 2-approximation algorithm for TSP with triangle inequality above to ...
These algorithms find the minimum spanning forest in a possibly disconnected graph; in contrast, the most basic form of Prim's algorithm only finds minimum spanning trees in connected graphs. However, running Prim's algorithm separately for each connected component of the graph, it can also be used to find the minimum spanning forest. [9]
Minimum degree spanning tree; Minimum k-cut; Minimum k-spanning tree; Minor testing (checking whether an input graph contains an input graph as a minor); the same holds with topological minors; Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in ...
The set of these minimum spanning trees is called a minimum spanning forest, which contains every vertex in the graph. This algorithm is a greedy algorithm, choosing the best choice given any situation. It is the reverse of Kruskal's algorithm, which is another greedy algorithm to find a minimum spanning tree. Kruskal’s algorithm starts with ...