Search results
Results From The WOW.Com Content Network
P wave and S wave from seismograph Velocity of seismic waves in Earth versus depth. [1] The negligible S-wave velocity in the outer core occurs because it is liquid, while in the solid inner core the S-wave velocity is non-zero. A seismic wave is a mechanical wave of acoustic energy that travels through the Earth or another planetary body.
The existence of the low-velocity zone was first proposed from the observation of slower than expected seismic wave arrivals from earthquakes in 1959 by Beno Gutenberg. [6] He noted that between 1° and 15° from the epicenter the longitudinal arrivals showed an exponential decrease in amplitude after which they showed a sudden large increase.
By analysing seismic waves generated by earthquakes, the velocity structure can be studied which can reflect the subsurface condition where the seismic wave propagated. Receiver Function Analysis Receiver function analysis is a seismic method that interprets waveform data to study the conversions and reflections of seismic waves at subsurface ...
Those seismic waves are like ripples on a pond, the USGS said. The earthquake will be strongest at its epicenter, the point on the surface directly above where the quake started, and the effects ...
Propagation velocity of the seismic waves through solid rock ranges from approx. 3 km/s (1.9 mi/s) up to 13 km/s (8.1 mi/s), depending on the density and elasticity of the medium. In the Earth's interior, the shock- or P waves travel much faster than the S waves (approx. relation 1.7:1).
Overall, S waves are shear waves, and shear stress is a type of deformation that cannot occur in a liquid. [11] [12] [14] Conversely, P waves are compressional waves and are only partially dependent on rigidity. P waves still maintain some velocity (can be greatly reduced) when traveling through a liquid. [7] [8] [14] [15]
Seismic waves are mechanical perturbations that travel in the Earth at a speed governed by the acoustic impedance of the medium in which they are travelling. The acoustic (or seismic) impedance, Z, is defined by the equation: = , where v is the seismic wave velocity and ρ (Greek rho) is the density of the rock.
Seismology (/ s aɪ z ˈ m ɒ l ə dʒ i, s aɪ s-/; from Ancient Greek σεισμός (seismós) meaning "earthquake" and -λογία (-logía) meaning "study of") is the scientific study of earthquakes (or generally, quakes) and the generation and propagation of elastic waves through planetary bodies.