When.com Web Search

  1. Ad

    related to: logistic regression tutorial pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is a supervised machine learning algorithm widely used for binary classification tasks, such as identifying whether an email is spam or not and diagnosing diseases by assessing the presence or absence of specific conditions based on patient test results. This approach utilizes the logistic (or sigmoid) function to transform ...

  3. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...

  4. Conditional logistic regression - Wikipedia

    en.wikipedia.org/.../Conditional_logistic_regression

    Conditional logistic regression is an extension of logistic regression that allows one to account for stratification and matching. Its main field of application is observational studies and in particular epidemiology. It was devised in 1978 by Norman Breslow, Nicholas Day, Katherine Halvorsen, Ross L. Prentice and C. Sabai. [1]

  5. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis).

  6. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    The multilevel regression is the use of a multilevel model to smooth noisy estimates in the cells with too little data by using overall or nearby averages. One application is estimating preferences in sub-regions (e.g., states, individual constituencies) based on individual-level survey data gathered at other levels of aggregation (e.g ...

  7. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.

  8. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    The logistic loss is convex and grows linearly for negative values which make it less sensitive to outliers. The logistic loss is used in the LogitBoost algorithm . The minimizer of I [ f ] {\displaystyle I[f]} for the logistic loss function can be directly found from equation (1) as

  9. Hosmer–Lemeshow test - Wikipedia

    en.wikipedia.org/wiki/Hosmer–Lemeshow_test

    The researcher performs a logistic regression, where "success" is a grade of A in the memory test, and the explanatory (x) variable is dose of caffeine. The logistic regression indicates that caffeine dose is significantly associated with the probability of an A grade (p < 0.001). However, the plot of the probability of an A grade versus mg ...