When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Artificial intelligence engineering - Wikipedia

    en.wikipedia.org/wiki/Artificial_intelligence...

    Artificial intelligence engineering (AI engineering) is a technical discipline that focuses on the design, development, and deployment of AI systems. AI engineering involves applying engineering principles and methodologies to create scalable, efficient, and reliable AI-based solutions.

  3. Machine learning control - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_control

    One example is the genetic algorithm for optimizing coefficients of a PID controller [2] or discrete-time optimal control. [ 3 ] Control design as regression problem of the first kind: MLC approximates a general nonlinear mapping from sensor signals to actuation commands, if the sensor signals and the optimal actuation command are known for ...

  4. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    An example is Multi-view Classification based on Consensus Matrix Decomposition (MCMD), [2] which mines a common clustering scheme across multiple datasets. MCMD is designed to output two types of class labels (scale-variant and scale-invariant clustering), and: is computationally robust to missing information, can obtain shape- and scale-based ...

  5. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  6. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In feature engineering, two types of features are commonly used: numerical and categorical. Numerical features are continuous values that can be measured on a scale. Examples of numerical features include age, height, weight, and income. Numerical features can be used in machine learning algorithms directly. [citation needed]

  7. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    Active learning: Instead of assuming that all of the training examples are given at the start, active learning algorithms interactively collect new examples, typically by making queries to a human user. Often, the queries are based on unlabeled data, which is a scenario that combines semi-supervised learning with active learning.

  8. Active learning (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Active_learning_(machine...

    This type of iterative supervised learning is called active learning. Since the learner chooses the examples, the number of examples to learn a concept can often be much lower than the number required in normal supervised learning. With this approach, there is a risk that the algorithm is overwhelmed by uninformative examples.

  9. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Inductive inference as developed by Ray Solomonoff; [5] [6] Algorithmic learning theory, from the work of E. Mark Gold; [7] Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms.