Search results
Results From The WOW.Com Content Network
The forces acting on a body add as vectors, and so the total force on a body depends upon both the magnitudes and the directions of the individual forces. [ 23 ] : 58 When the net force on a body is equal to zero, then by Newton's second law, the body does not accelerate, and it is said to be in mechanical equilibrium .
F is the resultant force applied, t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. [1] Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial. [2]
In physics and mechanics, torque is the rotational analogue of linear force. [1] It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.
In physics, a force is considered a vector quantity. This means that it not only has a size (or magnitude) but also a direction in which it acts. We typically represent force with the symbol F in boldface, or sometimes, we place an arrow over the symbol to indicate its vector nature, like this: .
The impulse response from a simple audio system. Showing, from top to bottom, the original impulse, the response after high frequency boosting, and the response after low frequency boosting. In signal processing and control theory , the impulse response , or impulse response function ( IRF ), of a dynamic system is its output when presented ...
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...