Search results
Results From The WOW.Com Content Network
Alternate angles are the four pairs of angles that: have distinct vertex points, lie on opposite sides of the transversal and; both angles are interior or both angles are exterior. If the two angles of one pair are congruent (equal in measure), then the angles of each of the other pairs are also congruent.
The side opposite angle α meets the circle twice: once at each end; in each case at angle α (similarly for the other two angles). This is due to the alternate segment theorem, which states that the angle between the tangent and chord equals the angle in the alternate segment.
Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem. The Milne-Thomson circle theorem in fluid dynamics. Five circles theorem; Six circles theorem; Seven circles theorem; Gershgorin ...
The sum of the angles is the same for every triangle. There exists a pair of similar, but not congruent, triangles. Every triangle can be circumscribed. If three angles of a quadrilateral are right angles, then the fourth angle is also a right angle. There exists a quadrilateral in which all angles are right angles, that is, a rectangle.
The elevation is the signed angle from the x-y reference plane to the radial line segment OP, where positive angles are designated as upward, towards the zenith reference. Elevation is 90 degrees (= π / 2 radians) minus inclination.
A cyclic polygon with an even number of sides has all angles equal if and only if the alternate sides are equal (that is, sides 1, 3, 5, … are equal, and sides 2, 4, 6, … are equal). [ 11 ] A cyclic pentagon with rational sides and area is known as a Robbins pentagon .
The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles. There are two exterior angles at each vertex of the polygon, each determined by extending one of the two sides of the polygon that meet at the vertex; these two angles are vertical and hence are equal.
Then angle APB is the arithmetic mean of the angles AOB and COD. This is a direct consequence of the inscribed angle theorem and the exterior angle theorem. There are no cyclic quadrilaterals with rational area and with unequal rational sides in either arithmetic or geometric progression. [26]