Search results
Results From The WOW.Com Content Network
The Robertson–Seymour theorem states that finite undirected graphs and graph minors form a well-quasi-ordering. The graph minor relationship does not contain any infinite descending chain, because each contraction or deletion reduces the number of edges and vertices of the graph (a non-negative integer). [8]
An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices.
A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good reason" for this.
In mathematics, a simple subcubic graph (SSCG) is a finite simple graph in which each vertex has a degree of at most three. Suppose we have a sequence of simple subcubic graphs G 1, G 2, ... such that each graph G i has at most i + k vertices (for some integer k) and for no i < j is G i homeomorphically embeddable into (i.e. is a graph minor of) G j.
These graph classes include planar graphs, map graphs, bounded-genus graphs and graphs excluding any fixed minor. In particular, bidimensionality theory builds on the graph minor theory of Robertson and Seymour by extending the mathematical results and building new algorithmic tools.
Since every minor of a planar graph is itself planar, this gives a planar cover of the minor G. Because the graphs with planar covers are closed under the operation of taking minors, it follows from the Robertson–Seymour theorem that they may be characterized by a finite set of forbidden minors. [7] A graph is a forbidden minor for this ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
(This example is an adaptation of the graph presented in Bodlaender (1994a), emphasis added) In the first of their famous series of papers on graph minors, Neil Robertson and Paul Seymour define a path-decomposition of a graph G to be a sequence of subsets X i of vertices of G, with two properties: