Search results
Results From The WOW.Com Content Network
The Robertson–Seymour theorem states that finite undirected graphs and graph minors form a well-quasi-ordering. The graph minor relationship does not contain any infinite descending chain, because each contraction or deletion reduces the number of edges and vertices of the graph (a non-negative integer). [8]
An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices.
A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good reason" for this.
Graph minors theorem. Add languages. Add links. ... Download as PDF; Printable version; In other projects ... Redirect page. Redirect to: Robertson–Seymour theorem ...
Download as PDF; Printable version; ... Pages in category "Graph minor theory" The following 33 pages are in this category, out of 33 total. ... Robertson–Seymour ...
In mathematics, a simple subcubic graph (SSCG) is a finite simple graph in which each vertex has a degree of at most three. Suppose we have a sequence of simple subcubic graphs G 1, G 2, ... such that each graph G i has at most i + k vertices (for some integer k) and for no i < j is G i homeomorphically embeddable into (i.e. is a graph minor of) G j.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
By Robertson–Seymour theorem, any set of finite graphs contains only a finite number of minor-minimal elements. In particular, the set of "yes" instances has a finite number of minor-minimal elements. Given an input graph G, the following "algorithm" solves the above problem: For every minor-minimal element H: If H is a minor of G then return ...