Search results
Results From The WOW.Com Content Network
Golden spirals are self-similar. The shape is infinitely repeated when magnified. In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. [1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes.
The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers.
approximation of the golden spiral golden spiral = special case of the logarithmic spiral Spiral of Theodorus (also known as Pythagorean spiral) c. 500 BC: contiguous right triangles composed of one leg with unit length and the other leg being the hypotenuse of the prior triangle: approximates the Archimedean spiral
The chambered nautilus is often used as an example of the golden spiral. While nautiluses show logarithmic spirals, their ratios range from about 1.24 to 1.43, with an average ratio of about 1.33 to 1. The golden spiral's ratio is 1.618. This is visible when the cut nautilus is inspected. [13]
As another example, Carlos Chanfón Olmos states that the sculpture of King Gudea (c. 2350 BC) has golden proportions between all of its secondary elements repeated many times at its base. [3] The Great Pyramid of Giza (constructed c. 2570 BC by Hemiunu) exhibits the golden ratio according to various pyramidologists, including Charles Funck-Hellet.
Two golden arches, one on each side of the building, did just that. Originally, the two arches were not meant to form an "M," as they do today in the chain's logo.
The Fibonacci sequence is frequently referenced in the 2001 book The Perfect Spiral by Jason S. Hornsby. A youthful Fibonacci is one of the main characters in the novel Crusade in Jeans (1973). He was left out of the 2006 movie version, however. The Fibonacci sequence and golden ratio are briefly described in John Fowles's 1985 novel A Maggot.
Approximate and true Golden Spirals. The green spiral is made from quarter-circles tangent to the interior of each square, while the red spiral is a much closer approximation to a Golden Spiral, a special type of logarithmic spiral. Overlapping portions appear in yellow. Date: 29 August 2009, 17:15 (UTC) Source: FakeRealLogSpiral.png; Author