Search results
Results From The WOW.Com Content Network
Most diethyl ether is produced as a byproduct of the vapor-phase hydration of ethylene to make ethanol.This process uses solid-supported phosphoric acid catalysts and can be adjusted to make more ether if the need arises: [9] Vapor-phase dehydration of ethanol over some alumina catalysts can give diethyl ether yields of up to 95%.
A good example is the formation of adducts between the Lewis acid borane and the oxygen atom in the Lewis bases, tetrahydrofuran (THF): BH 3 ·O(CH 2) 4 or diethyl ether: BH 3 ·O(CH 3 CH 2) 2. Many Lewis acids and Lewis bases reacting in the gas phase or in non-aqueous solvents to form adducts have been examined in the ECW model. [3]
A cyclic ether and high-boiling solvent (b.p. 101.1 °C). Tetrahydrofuran (THF) A cyclic ether, one of the most polar simple ethers that is used as a solvent. Anisole (methoxybenzene) An aryl ether and a major constituent of the essential oil of anise seed. Crown ethers: Cyclic polyethers that are used as phase transfer catalysts. Polyethylene ...
S N 1 ether cleavage is generally faster than S N 2 ether cleavage. However, reactions that would require the formation of unstable carbocations (methyl, vinyl, aryl or primary carbon) proceed via S N 2 mechanism. The hydrohalic acid also plays an important role, as the rate of reaction is greater with hydroiodic acid than with hydrobromic acid.
Reductions with hydrosilanes are methods used for hydrogenation and hydrogenolysis of organic compounds.The approach is a subset of ionic hydrogenation.In this particular method, the substrate is treated with a hydrosilane and auxiliary reagent, often a strong acid, resulting in formal transfer of hydride from silicon to carbon. [1]
Often as a solution in diethyl ether and followed by an acid workup, it will convert esters, carboxylic acids, acyl chlorides, aldehydes, and ketones into the corresponding alcohols (see: carbonyl reduction). Similarly, it converts amide, [24] [25] nitro, nitrile, imine, oxime, [26] and organic azides into the amines (see: amide reduction).
The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.
Several entrainers can be used for this specific process: benzene, pentane, cyclohexane, hexane, heptane, isooctane, acetone, and diethyl ether are all options as the mixture. [2] Of these benzene and cyclohexane have been used the most extensively, but since the identification of benzene as a carcinogen, toluene is used instead. [citation needed]