When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Controllability Gramian - Wikipedia

    en.wikipedia.org/wiki/Controllability_Gramian

    In control theory, we may need to find out whether or not a system such as ˙ = + () = + is controllable, where , , and are, respectively, , , and matrices for a system with inputs, state variables and outputs.

  3. Controllability - Wikipedia

    en.wikipedia.org/wiki/Controllability

    For example, if matrix D = 0 and matrix C does not have full row rank, then some positions of the output are masked by the limiting structure of the output matrix, and therefore unachievable. Moreover, even though the system can be moved to any state in finite time, there may be some outputs that are inaccessible by all states.

  4. Kalman decomposition - Wikipedia

    en.wikipedia.org/wiki/Kalman_decomposition

    In control theory, a Kalman decomposition provides a mathematical means to convert a representation of any linear time-invariant (LTI) control system to a form in which the system can be decomposed into a standard form which makes clear the observable and controllable components of the system.

  5. Ackermann's formula - Wikipedia

    en.wikipedia.org/wiki/Ackermann's_Formula

    In control theory, Ackermann's formula is a control system design method for solving the pole allocation problem for invariant-time systems by Jürgen Ackermann. [1] One of the primary problems in control system design is the creation of controllers that will change the dynamics of a system by changing the eigenvalues of the matrix representing the dynamics of the closed-loop system. [2]

  6. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    That is, a real or complex Gram matrix is also a normal matrix. The Gram matrix of any orthonormal basis is the identity matrix. Equivalently, the Gram matrix of the rows or the columns of a real rotation matrix is the identity matrix. Likewise, the Gram matrix of the rows or columns of a unitary matrix is the identity matrix.

  7. Observability - Wikipedia

    en.wikipedia.org/wiki/Observability

    Observability is a measure of how well internal states of a system can be inferred from knowledge of its external outputs. In control theory, the observability and controllability of a linear system are mathematical duals.

  8. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The observability and controllability of a system are mathematical duals (i.e., as controllability provides that an input is available that brings any initial state to any desired final state, observability provides that knowing an output trajectory provides enough information to predict the initial state of the system).

  9. Algebraic Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_Riccati_equation

    where x is an n × 1 vector of state variables, u is a k × 1 vector of control variables, A is the n × n state transition matrix, B is the n × k matrix of control multipliers, Q (n × n) is a symmetric positive semi-definite state cost matrix, and R (k × k) is a symmetric positive definite control cost matrix.