Search results
Results From The WOW.Com Content Network
The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...
The angle θ which appears in the eigenvalue expression corresponds to the angle of the Euler axis and angle representation. The eigenvector corresponding to the eigenvalue of 1 is the accompanying Euler axis, since the axis is the only (nonzero) vector which remains unchanged by left-multiplying (rotating) it with the rotation matrix.
The infinite series of axial or prismatic groups have an index n, which can be any integer; in each series, the nth symmetry group contains n-fold rotational symmetry about an axis, i.e. symmetry with respect to a rotation by an angle 360°/n. n=1 covers the cases of no rotational symmetry at all.
The user may choose to replace the inclination angle by its complement, the elevation angle (or altitude angle), measured upward between the reference plane and the radial line—i.e., from the reference plane upward (towards to the positive z-axis) to the radial line. The depression angle is the negative of the elevation angle.
To find the angle of a rotation, once the axis of the rotation is known, select a vector v perpendicular to the axis. Then the angle of the rotation is the angle between v and Rv. A more direct method, however, is to simply calculate the trace: the sum of the diagonal elements of the rotation matrix.
Euler's original drawing where ABC is the blue circle and ACc is the red circle. Euler also points out that O can be found by intersecting the perpendicular bisector of Aa with the angle bisector of ∠αAa, a construction that might be easier in practice. He also proposed the intersection of two planes:
The rotation axis is sometimes called the Euler axis. The axis–angle representation is predicated on Euler's rotation theorem, which dictates that any rotation or sequence of rotations of a rigid body in a three-dimensional space is equivalent to a pure rotation about a single fixed axis. It is one of many rotation formalisms in three dimensions.
A great circle transforms to another great circle under rotations, leaving always a diameter of the sphere in its original position. Figure 2: A rotation represented by an Euler axis and angle. In three dimensions, angular displacement is an entity with a direction and a magnitude.