When.com Web Search

  1. Ad

    related to: equations parallel and perpendicular lines

Search results

  1. Results From The WOW.Com Content Network
  2. Distance between two parallel lines - Wikipedia

    en.wikipedia.org/wiki/Distance_between_two...

    Because the lines are parallel, the perpendicular distance between them is a constant, so it does not matter which point is chosen to measure the distance. Given the equations of two non-vertical parallel lines = + = +,

  3. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines and calculating the distance between them. Since the lines have slope m, a common perpendicular would have slope −1/m and we can take the line with equation y = −x/m as a common perpendicular ...

  4. Ultraparallel theorem - Wikipedia

    en.wikipedia.org/wiki/Ultraparallel_theorem

    Lines perpendicular to line l are modeled by chords whose extension passes through the pole of l. Hence we draw the unique line between the poles of the two given lines, and intersect it with the boundary circle; the chord of intersection will be the desired common perpendicular of the ultraparallel lines.

  5. Distance from a point to a line - Wikipedia

    en.wikipedia.org/.../Distance_from_a_point_to_a_line

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  6. Perpendicular - Wikipedia

    en.wikipedia.org/wiki/Perpendicular

    Perpendicular is also used as a noun: a perpendicular is a line which is perpendicular to a given line or plane. Perpendicularity is one particular instance of the more general mathematical concept of orthogonality ; perpendicularity is the orthogonality of classical geometric objects.

  7. Affine geometry - Wikipedia

    en.wikipedia.org/wiki/Affine_geometry

    As affine geometry deals with parallel lines, one of the properties of parallels noted by Pappus of Alexandria has been taken as a premise: [9] [10] Suppose A, B, C are on one line and A', B', C' on another. If the lines AB' and A'B are parallel and the lines BC' and B'C are parallel, then the lines CA' and C'A are parallel.

  8. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    In a cyclic quadrilateral, four line segments, each perpendicular to one side and passing through the opposite side's midpoint, are concurrent. [3]: p.131, [5] These line segments are called the maltitudes, [6] which is an abbreviation for midpoint altitude.

  9. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    the x-coordinate of a point is the signed distance of its projection onto the line (the foot of the perpendicular segment to the line from that point) to the origin; the y-coordinate is the signed distance from the point to the line, with the sign according to whether the point is on the positive or negative side of the oriented line.