Search results
Results From The WOW.Com Content Network
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...
Three-dimensional plot showing the values of the logarithmic mean. In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer.
In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ΔT).
Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer. In that case, Newton's law only approximates the result when the temperature difference is relatively small.
Also I think calling the log mean temperature difference a 'logarithmic average' is a bit of a misnomer. LMTD is just the mean temperature difference (ie, just an arithmetic mean), it just turns out the arithmetic mean using infinitesimal steps has a log in it (see the derivation section)! Calling it a logarithmic mean just confuses the issue ...
When the actual temperature dips down to minus 40, you'll often see people lining up at the university sign in Fairbanks, Alaska, to catch the occasion on camera. There's even an official " 40 ...
The total rate of heat transfer between the hot and cold fluids passing through a plate heat exchanger may be expressed as: Q = UA∆Tm where U is the Overall heat transfer coefficient, A is the total plate area, and ∆Tm is the Log mean temperature difference. U is dependent upon the heat transfer coefficients in the hot and cold streams. [2]