When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

  3. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.

  4. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    An inner product space is a normed vector space whose norm is the square root of the inner product of a vector and itself. The Euclidean norm of a Euclidean vector space is a special case that allows defining Euclidean distance by the formula d ( A , B ) = ‖ A B → ‖ . {\displaystyle d(A,B)=\|{\overrightarrow {AB}}\|.}

  5. Symplectic vector space - Wikipedia

    en.wikipedia.org/wiki/Symplectic_vector_space

    A subspace is Lagrangian if and only if it is both isotropic and coisotropic. In a finite-dimensional vector space, a Lagrangian subspace is an isotropic one whose dimension is half that of V. Every isotropic subspace can be extended to a Lagrangian one. Referring to the canonical vector space R 2n above, the subspace spanned by {x 1, y 1} is ...

  6. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces .

  7. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  8. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().

  9. Unit vector - Wikipedia

    en.wikipedia.org/wiki/Unit_vector

    In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in ^ (pronounced "v-hat"). The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e.,