When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourier number - Wikipedia

    en.wikipedia.org/wiki/Fourier_number

    In the study of heat conduction, the Fourier number, is the ratio of time, , to a characteristic time scale for heat diffusion, . This dimensionless group is named in honor of J.B.J. Fourier , who formulated the modern understanding of heat conduction. [ 1 ]

  3. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    But the same spectral information can be discerned from just one cycle of the periodic function, since all the other cycles are identical. Similarly, finite-duration functions can be represented as a Fourier series, with no actual loss of information except that the periodicity of the inverse transform is a mere artifact.

  4. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    That there is no one preferred way (often, one says "no canonical way") to compare the two versions of the real line which are involved in the Fourier transform—fixing the units on one line does not force the scale of the units on the other line—is the reason for the plethora of rival conventions on the definition of the Fourier transform.

  5. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    In mathematics and physics, the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in ...

  6. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    The difference can be seen in making the connection with Fourier analysis. The Fourier transform on the real line is in one sense the spectral theory of differentiation as a differential operator. But for that to cover the phenomena one has already to deal with generalized eigenfunctions (for example, by means of a rigged Hilbert space).

  7. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered ...

  8. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    The energy content of this volume element at 5 km from the station is 2.1 × 10 −10 × 0.109 = 2.3 × 10 −11 J, which amounts to 3.4 × 10 14 photons per (). Since 3.4 × 10 14 > 1, quantum effects do not play a role. The waves emitted by this station are well-described by the classical limit and quantum mechanics is not needed.

  9. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.