When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.

  3. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:

  5. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  6. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    To elucidate the connection with the triple product rule, consider the point p 1 at time t and its corresponding point (with the same height) p̄ 1 at t+Δt. Define p 2 as the point at time t whose x-coordinate matches that of p̄ 1, and define p̄ 2 to be the corresponding point of p 2 as shown in the figure on the right.

  7. Jacobi triple product - Wikipedia

    en.wikipedia.org/wiki/Jacobi_triple_product

    for complex numbers x and y, with |x| < 1 and y ≠ 0. It was introduced by Jacobi in his work Fundamenta Nova Theoriae Functionum Ellipticarum. The Jacobi triple product identity is the Macdonald identity for the affine root system of type A 1, and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra.

  8. Triple product property - Wikipedia

    en.wikipedia.org/wiki/Triple_product_property

    In abstract algebra, the triple product property is an identity satisfied in some groups. Let G {\displaystyle G} be a non-trivial group. Three nonempty subsets S , T , U ⊂ G {\displaystyle S,T,U\subset G} are said to have the triple product property in G {\displaystyle G} if for all elements s , s ′ ∈ S {\displaystyle s,s'\in S} , t , t ...

  9. Triple system - Wikipedia

    en.wikipedia.org/wiki/Triple_system

    The first two identities abstract the skew symmetry and Jacobi identity for the triple commutator, while the third identity means that the linear map L u,v: V → V, defined by L u,v (w) = [u, v, w], is a derivation of the triple product. The identity also shows that the space k = span {L u,v : u, v ∈ V} is closed under commutator bracket ...