Search results
Results From The WOW.Com Content Network
Temperature distribution in a thermal bridge This thermal image shows a thermal bridging of a high-rise building (Aqua in Chicago). A thermal bridge, also called a cold bridge, heat bridge, or thermal bypass, is an area or component of an object which has higher thermal conductivity than the surrounding materials, [1] creating a path of least resistance for heat transfer. [2]
The heat conduction can be minimized by any of the following: reducing the cross sectional area of the bridges, increasing the bridge length, or decreasing the number of thermal bridges. One method of reducing thermal bridge effects is the installation of an insulation board (e.g. foam board EPS XPS, wood fibre board, etc.) over the exterior ...
Base isolators for seismic isolation of buildings, bridges, etc. Base isolators made of layers of neoprene and steel with a low horizontal stiffness are used to lower the natural frequency of the building. Some other base isolators are designed to slide, preventing the transfer of energy from the ground to the building. Tuned mass dampers
The calculation of the heat loss due to linear thermal bridging is relatively simple, given by the formula below: [3] H T B = y ∑ A e x p {\displaystyle H_{TB}=y\sum A_{exp}} In the formula, y = 0.08 {\displaystyle y=0.08} if Accredited Construction details used, and y = 0.15 {\displaystyle y=0.15} otherwise, and ∑ A e x p {\displaystyle ...
Continuous insulation without thermal bridges or "insulation gaps", as is common in framed construction Thermal mass , when used well and combined with passive solar design, can play an important role in further reductions in energy use, especially in climates where it is common to have outside temperatures swing above inside temperatures ...
Starting with its Accelerated Bridge Program in the late 2000s, the Massachusetts Department of Transportation began employing accelerated construction techniques, in which it signs contracts with incentives for early completion and penalties for late completion, and uses intense construction during longer periods of complete closure to shorten ...
Example of flat piece of concrete having dislodged with corroded rebar underneath, Welland River bridge across Queen Elizabeth Way in Niagara Falls, Ontario. The expansion of the corrosion products (iron oxides) of carbon steel reinforcement structures may induce internal mechanical stress (tensile stress) that cause the formation of cracks and disrupt the concrete structure.
Tight building design, including energy-efficient windows, well-sealed doors, and additional thermal insulation of walls, basement slabs, and foundations can reduce heat loss by 25 to 50 percent. [25] [31] Dark roofs may become up to 39 °C (70 °F) hotter than the most reflective white surfaces. They transmit some of this additional heat ...