Search results
Results From The WOW.Com Content Network
A ternary / ˈ t ɜːr n ər i / numeral system (also called base 3 or trinary [1]) has three as its base. Analogous to a bit , a ternary digit is a trit ( tri nary dig it ). One trit is equivalent to log 2 3 (about 1.58496) bits of information .
"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]
Balanced ternary is a ternary numeral system (i.e. base 3 with three digits) that uses a balanced signed-digit representation of the integers in which the digits have the values −1, 0, and 1. This stands in contrast to the standard (unbalanced) ternary system, in which digits have values 0, 1 and 2.
3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1. In elementary arithmetic, denotes multiplication, and is read as times; for example, 3 × 2. 2. In geometry and linear algebra, denotes the cross product. 3.
The extended base of a triangle (a particular case of an extended side) is the line that contains the base. When the triangle is obtuse and the base is chosen to be one of the sides adjacent to the obtuse angle , then the altitude dropped perpendicularly from the apex to the base intersects the extended base outside of the triangle.
The common names for negative-base positional numeral systems are formed by prefixing nega-to the name of the corresponding positive-base system; for example, negadecimal (base −10) corresponds to decimal (base 10), negabinary (base −2) to binary (base 2), negaternary (base −3) to ternary (base 3), and negaquaternary (base −4) to ...
In a positional base b numeral system (with b a natural number greater than 1 known as the radix or base of the system), b basic symbols (or digits) corresponding to the first b natural numbers including zero are used. To generate the rest of the numerals, the position of the symbol in the figure is used.
[3] Unary is a bijective numeral system. However, although it has sometimes been described as "base 1", [4] it differs in some important ways from positional notations, in which the value of a digit depends on its position within a number. For instance, the unary form of a number can be exponentially longer than its representation in other ...