Search results
Results From The WOW.Com Content Network
Bodenstein number: Bo or Bd = / = Max Bodenstein: chemistry (residence-time distribution; similar to the axial mass transfer Peclet number) [2] Damköhler numbers: Da = Gerhard Damköhler: chemistry (reaction time scales vs. residence time)
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The third chart in each set was supplemented by Gröber in 1961, and this particular one shows the dimensionless heat transferred from the wall as a function of a dimensionless time variable. The vertical axis is a plot of Q/Q o, the ratio of actual heat transfer to the amount of total possible heat transfer before T = T ∞.
The Stanton number (St), is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). [1] [2]: 476 It is used to characterize heat transfer in forced convection flows.
In the study of heat conduction, the Fourier number, is the ratio of time, , to a characteristic time scale for heat diffusion, . This dimensionless group is named in honor of J.B.J. Fourier , who formulated the modern understanding of heat conduction. [ 1 ]
The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations, named for the eighteenth-century French physicist Jean-Baptiste Biot (1774–1862). The Biot number is the ratio of the thermal resistance for conduction inside a body to the resistance for convection at the surface of the body.
The Eckert number (Ec) is a dimensionless number used in continuum mechanics. It expresses the relationship between a flow's kinetic energy and the boundary layer enthalpy difference, and is used to characterize heat transfer dissipation. [1] It is named after Ernst R. G. Eckert. It is defined as
The Rayleigh number, shown below, is a dimensionless number that characterizes convection problems in heat transfer. A critical value exists for the Rayleigh number, above which fluid motion occurs. [3]