Search results
Results From The WOW.Com Content Network
Figure 1: Hall–Petch strengthening is limited by the size of dislocations. Once the grain size reaches about 10 nanometres (3.9 × 10 −7 in), grain boundaries start to slide. In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain
There are mainly two types of grain boundary sliding: Rachinger sliding, [2] and Lifshitz sliding. [3] Grain boundary sliding usually occurs as a combination of both types of sliding. Boundary shape often determines the rate and extent of grain boundary sliding. [4] Grain boundary sliding is a motion to prevent intergranular cracks from forming.
As the grain is bent further, more and more dislocations must be introduced to accommodate the deformation resulting in a growing wall of dislocations – a low-angle boundary. The grain can now be considered to have split into two sub-grains of related crystallography but notably different orientations.
Subgrains are defined as grains that are oriented at a < 10–15 degree angle at the grain boundary, making it a low-angle grain boundary (LAGB). Due to the relationship between the energy versus the number of dislocations at the grain boundary, there is a driving force for fewer high-angle grain boundaries (HAGB) to form and grow instead of a ...
Dislocations are linear defects, around which the atoms of the crystal lattice are misaligned. [14] There are two basic types of dislocations, the edge dislocation and the screw dislocation. "Mixed" dislocations, combining aspects of both types, are also common. An edge dislocation is shown. The dislocation line is presented in blue, the ...
The pile-up of dislocations at grain boundaries and Orowan loops around strong precipitates are two main sources of these back stresses. When the strain direction is reversed, dislocations of the opposite sign can be produced from the same source that produced the slip-causing dislocations in the initial direction.
PSB structure (adopted from [7]). Persistent slip-bands (PSBs) are associated with strain localisation due to fatigue in metals and cracking on the same plane. Transmission electron microscopy (TEM) and three-dimensional discrete dislocation dynamics (DDD [8]) simulation were used to reveal and understand dislocations type and arrangement/patterns to relate it to the sub-surface structure.
The result is that the dislocation must bend (which requires greater energy, or a greater stress to be applied) around the precipitates, which inevitably leaves residual dislocation loops encircling the second phase material and shortens the original dislocation. This schematic shows how a dislocation interacts with solid phase precipitates.