Search results
Results From The WOW.Com Content Network
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
P can also be defined as an algorithmic complexity class for problems that are not decision problems [11] (even though, for example, finding the solution to a 2-satisfiability instance in polynomial time automatically gives a polynomial algorithm for the corresponding decision problem). In that case P is not a subset of NP, but P∩DEC is ...
Clearly, a #P problem must be at least as hard as the corresponding NP problem, since a count of solutions immediately tells if at least one solution exists, if the count is greater than zero. Surprisingly, some #P problems that are believed to be difficult correspond to easy (for example linear-time) P problems. [18]
For example, the amount of time it takes to solve problems in the complexity class P grows at a polynomial rate as the input size increases, which is comparatively slow compared to problems in the exponential complexity class EXPTIME (or more accurately, for problems in EXPTIME that are outside of P, since ).
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
NC i is the class of decision problems decidable by uniform boolean circuits with a polynomial number of gates of at most two inputs and depth O((log n) i), or the class of decision problems solvable in time O((log n) i) on a parallel computer with a polynomial number of processors. Clearly, we have
The complexity class P (all problems solvable, deterministically, in polynomial time) is contained in NP (problems where solutions can be verified in polynomial time), because if a problem is solvable in polynomial time, then a solution is also verifiable in polynomial time by simply solving the problem.
For example, some difficult problems need algorithms that take an exponential amount of time in terms of the size of the problem to solve. Take the travelling salesman problem , for example. It can be solved, as denoted in Big O notation , in time O ( n 2 2 n ) {\displaystyle O(n^{2}2^{n})} (where n is the size of the network to visit – the ...