When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  3. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    A red arrow originating at a point shows the direction of the negative gradient at that point. Note that the (negative) gradient at a point is orthogonal to the contour line going through that point. We see that gradient descent leads us to the bottom of the bowl, that is, to the point where the value of the function is minimal.

  4. Line search - Wikipedia

    en.wikipedia.org/wiki/Line_search

    At each iteration, there is a set of "working points" in which we know the value of f (and possibly also its derivative). Based on these points, we can compute a polynomial that fits the known values, and find its minimum analytically. The minimum point becomes a new working point, and we proceed to the next iteration: [1]: sec.5

  5. Powell's method - Wikipedia

    en.wikipedia.org/wiki/Powell's_method

    Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs. The caller passes in the initial point.

  6. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    The Gauss-Newton iteration is guaranteed to converge toward a local minimum point ^ under 4 conditions: [4] The functions , …, are twice continuously differentiable in an open convex set ^, the Jacobian (^) is of full column rank, the initial iterate () is near ^, and the local minimum value | (^) | is small.

  7. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    The minimum of f is 0 at z if and only if z solves the linear complementarity problem. If M is positive definite, any algorithm for solving (strictly) convex QPs can solve the LCP. Specially designed basis-exchange pivoting algorithms, such as Lemke's algorithm and a variant of the simplex algorithm of Dantzig have been used for decades ...

  8. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    Quasi-Newton methods for optimization are based on Newton's method to find the stationary points of a function, points where the gradient is 0. Newton's method assumes that the function can be locally approximated as a quadratic in the region around the optimum, and uses the first and second derivatives to find the stationary point.

  9. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The positive-negative momentum estimation lets to avoid the local minimum and converges at the objective function global minimum. [10] Further, critical points can be classified using the definiteness of the Hessian matrix: If the Hessian is positive definite at a critical point, then the point is a local minimum; if the Hessian matrix is ...