When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geometric mean - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean

    The geometric mean can also be expressed as the exponential of the arithmetic mean of logarithms. [4] By using logarithmic identities to transform the formula, the multiplications can be expressed as a sum and the power as a multiplication:

  3. Logarithmic mean - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean

    The logarithmic mean of two numbers is smaller than the arithmetic mean and the generalized mean with exponent greater than 1. However, it is larger than the geometric mean and the harmonic mean, respectively. The inequalities are strict unless both numbers are equal.

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  5. Arithmetic–geometric mean - Wikipedia

    en.wikipedia.org/wiki/Arithmetic–geometric_mean

    In mathematics, the arithmetic–geometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential , trigonometric functions , and other special functions , as well as some ...

  6. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Here M(x, y) denotes the arithmetic–geometric mean of x and y. It is obtained by repeatedly calculating the average (x + y)/2 (arithmetic mean) and (geometric mean) of x and y then let those two numbers become the next x and y. The two numbers quickly converge to a common limit which is the value of M(x, y).

  7. Generalized mean - Wikipedia

    en.wikipedia.org/wiki/Generalized_mean

    The power mean could be generalized further to the generalized f-mean: (, …,) = (= ()) This covers the geometric mean without using a limit with f(x) = log(x). The power mean is obtained for f(x) = x p. Properties of these means are studied in de Carvalho (2016).

  8. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    The geometric or multiplicative mean of independent, identically distributed, positive random variables shows, for , approximately a log-normal distribution with parameters = [⁡ ()] and = [⁡ ()] /, assuming is finite.

  9. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.