Search results
Results From The WOW.Com Content Network
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [ 1 ]
Thus, SVMs use the kernel trick to implicitly map their inputs into high-dimensional feature spaces, where linear classification can be performed. [3] Being max-margin models, SVMs are resilient to noisy data (e.g., misclassified examples). SVMs can also be used for regression tasks, where the objective becomes -sensitive.
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...
Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.