Search results
Results From The WOW.Com Content Network
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa ), which is equivalent to 1,013.25 millibars , [ 1 ] 760 mm Hg , 29.9212 inches Hg , or 14.696 psi . [ 2 ]
In aviation, pressure altitude is the height above a standard datum plane (SDP), which is a theoretical level where the weight of the atmosphere is 29.921 inches of mercury (1,013.2 mbar; 14.696 psi) as measured by a barometer. [2]
The bar is a metric unit of pressure defined as 100,000 Pa (100 kPa), though not part of the International System of Units (SI). A pressure of 1 bar is slightly less than the current average atmospheric pressure on Earth at sea level (approximately 1.013 bar).
It is used for barometric pressure in weather reports, refrigeration and aviation in the United States. It is the pressure exerted by a column of mercury 1 inch (25.4 mm) in height at the standard acceleration of gravity. Conversion to metric units depends on the density of mercury, and hence its temperature; typical conversion factors are: [1]
For example, if a barometer located at sea level and under fair weather conditions is moved to an altitude of 1,000 feet (305 m), about 1 inch of mercury (~35 hPa) must be added on to the reading. The barometer readings at the two locations should be the same if there are negligible changes in time, horizontal distance, and temperature.
Flight levels [3] are described by a number, which is the nominal altitude, or pressure altitude, in hundreds of feet, and a multiple of 500 ft.Therefore, a pressure altitude of 32,000 ft (9,800 m) is referred to as "flight level 320".
The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly 1 / 760 of a standard atmosphere (101325 Pa). Thus one torr is exactly 101325 / 760 pascals (≈ 133.32 Pa).