When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    Numerical aperture of a thin lens. Numerical aperture is not typically used in photography. Instead, the angular aperture of a lens (or an imaging mirror) is expressed by the f-number, written f /N, where N is the f-number given by the ratio of the focal length f to the diameter of the entrance pupil D: =.

  3. f-number - Wikipedia

    en.wikipedia.org/wiki/F-number

    The f-number is also known as the inverse relative aperture, because it is the inverse of the relative aperture, defined as the aperture diameter divided by focal length. [5] The relative aperture indicates how much light can pass through the lens at a given focal length. A lower f-number means a larger relative aperture and more light entering ...

  4. Aperture - Wikipedia

    en.wikipedia.org/wiki/Aperture

    The lens aperture is usually specified as an f-number, the ratio of focal length to effective aperture diameter (the diameter of the entrance pupil). A lens typically has a set of marked "f-stops" that the f-number can be set to. A lower f-number denotes a greater aperture which allows more light to reach the film or image sensor.

  5. Entrance pupil - Wikipedia

    en.wikipedia.org/wiki/Entrance_pupil

    The f-number ("relative aperture"), N, is defined by N = f / E N, where f is the focal length and E N is the diameter of the entrance pupil. [2] Increasing the focal length of a lens (i.e., zooming in) will usually cause the f-number to increase, and the entrance pupil location to move further back along the optical axis.

  6. Depth of field - Wikipedia

    en.wikipedia.org/wiki/Depth_of_field

    For cameras that can only focus on one object distance at a time, depth of field is the distance between the nearest and the farthest objects that are in acceptably sharp focus in the image. [1] ". Acceptably sharp focus" is defined using a property called the "circle of confusion". The depth of field can be determined by focal length, distance ...

  7. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    Focal length. The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a ...

  8. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = ⁡, where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).

  9. Hyperfocal distance - Wikipedia

    en.wikipedia.org/wiki/Hyperfocal_distance

    f = the focal length of the lens in cm; a = the ratio of the aperture to the focal length; That is, a is the reciprocal of what we now call the f-number, and the answer is evidently in meters. His 0.41 should obviously be 0.40. Based on his formulae, and on the notion that the aperture ratio should be kept fixed in comparisons across formats ...