Search results
Results From The WOW.Com Content Network
A restriction enzyme, restriction endonuclease, REase, ENase or restrictase is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. [1] [2] [3] Restriction enzymes are one class of the broader endonuclease group of enzymes.
The restriction modification system (RM system) is found in bacteria and archaea, and provides a defense against foreign DNA, such as that borne by bacteriophages.. Bacteria have restriction enzymes, also called restriction endonucleases, which cleave double-stranded DNA at specific points into fragments, which are then degraded further by other endonucleases.
Restriction endonuclease (REase) EcoRII (pronounced "eco R two") is an enzyme of restriction modification system (RM) naturally found in Escherichia coli, a Gram-negative bacteria. Its molecular mass is 45.2 kDa , being composed of 402 amino acids .
A pUC19 cloning vector showing the multiple cloning site sequence with restriction enzyme sites. A multiple cloning site (MCS), also called a polylinker, is a short segment of DNA which contains many (up to ~20) restriction sites—a standard feature of engineered plasmids. [1]
A restriction enzyme or restriction endonuclease is a special type of biological macromolecule that functions as part of the "immune system" in bacteria.One special kind of restriction enzymes is the class of "homing endonucleases", these being present in all three domains of life, although their function seems to be very different from one domain to another.
A restriction map is a map of known restriction sites within a sequence of DNA. Restriction mapping requires the use of restriction enzymes . In molecular biology , restriction maps are used as a reference to engineer plasmids or other relatively short pieces of DNA, and sometimes for longer genomic DNA.
Several databases exist for restriction sites and enzymes, of which the largest noncommercial database is REBASE. [5] [6] Recently, it has been shown that statistically significant nullomers (i.e. short absent motifs which are highly expected to exist) in virus genomes are restriction sites indicating that viruses have probably got rid of these motifs to facilitate invasion of bacterial hosts. [7]
The principal function of restriction enzymes is the protection of the host genome against foreign DNA, but they may also have some involvement in recombination and transposition. [ 1 ] Like most type II restriction enzymes, BglII consists of two identical subunits that form a homodimer around the DNA double helix.