When.com Web Search

  1. Ad

    related to: derivative finder symbolab formula examples

Search results

  1. Results From The WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  3. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Two other well-known examples are when integration by parts is applied to a function expressed as a product of 1 and itself. This works if the derivative of the function is known, and the integral of this derivative times is also known. The first example is ⁡ (). We write this as:

  4. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken. For example, the second partial derivatives of a function f(x, y) are: [6]

  5. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    In the first group of examples u is an unknown function of x, and c and ω are constants that are supposed to be known. Two broad classifications of both ordinary and partial differential equations consist of distinguishing between linear and nonlinear differential equations, and between homogeneous differential equations and heterogeneous ones.

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Derivatives are frequently used to find the maxima and minima of a function. Equations involving derivatives are called differential equations and are fundamental in describing natural phenomena. Derivatives and their generalizations appear in many fields of mathematics, such as complex analysis, functional analysis, differential geometry ...

  7. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    The -th derivative of a function at a point is a local property only when is an integer; this is not the case for non-integer power derivatives. In other words, a non-integer fractional derivative of f {\displaystyle f} at x = c {\displaystyle x=c} depends on all values of f {\displaystyle f} , even those far away from c {\displaystyle c} .

  8. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    That is, the derivative of the area function A(x) exists and is equal to the original function f(x), so the area function is an antiderivative of the original function. Thus, the derivative of the integral of a function (the area) is the original function, so that derivative and integral are inverse operations which reverse each other. This is ...

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    [a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...