When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  3. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Given a set of n objects, centroid-based algorithms create k partitions based on a dissimilarity function, such that k≤n. A major problem in applying this type of algorithm is determining the appropriate number of clusters for unlabeled data. Therefore, most research in clustering analysis has been focused on the automation of the process.

  4. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Its calculation can be thought of as follows: For each cluster, count the number of data points from the most common class in said cluster. Now take the sum over all clusters and divide by the total number of data points. Formally, given some set of clusters and some set of classes , both partitioning data points, purity can be defined as: | |

  5. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.

  6. Consensus clustering - Wikipedia

    en.wikipedia.org/wiki/Consensus_clustering

    Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms.Also called cluster ensembles [1] or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better ...

  7. Dunn index - Wikipedia

    en.wikipedia.org/wiki/Dunn_index

    As do all other such indices, the aim is to identify sets of clusters that are compact, with a small variance between members of the cluster, and well separated, where the means of different clusters are sufficiently far apart, as compared to the within cluster variance. For a given assignment of clusters, a higher Dunn index indicates better ...

  8. Kubernetes - Wikipedia

    en.wikipedia.org/wiki/Kubernetes

    Each pod in Kubernetes is assigned a unique IP address within the cluster, allowing applications to use ports without the risk of conflict. [55] Within the pod, all containers can reference each other. A container resides inside a pod. The container is the lowest level of a micro-service, which holds the running application, libraries, and ...

  9. k-medians clustering - Wikipedia

    en.wikipedia.org/wiki/K-medians_clustering

    In statistics, k-medians clustering [1] [2] is a cluster analysis algorithm. It is a generalization of the geometric median or 1-median algorithm, defined for a single cluster. k-medians is a variation of k-means clustering where instead of calculating the mean for each cluster to determine its centroid, one instead calculates the median.