When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  3. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [ 1 ] Generally, if the function sin ⁡ x {\displaystyle \sin x} is any trigonometric function, and cos ⁡ x {\displaystyle \cos x} is its derivative,

  4. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Plot of Si(x) for 0 ≤ x ≤ 8π. Plot of the cosine integral function Ci(z) in the complex plane from −2 − 2i to 2 + 2i. The different sine integral definitions are ⁡ = ⁡ ⁡ = ⁡ .

  5. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.

  6. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    De Moivre's formula is a precursor to Euler's formula = ⁡ + ⁡, with x expressed in radians rather than degrees, which establishes the fundamental relationship between the trigonometric functions and the complex exponential function.

  7. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x − 1 8 sin ⁡ 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  8. List of integrals of inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.

  9. Dirichlet integral - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_integral

    [1] [2] This can be seen by using Dirichlet's test for improper integrals. It is a good illustration of special techniques for evaluating definite integrals, particularly when it is not useful to directly apply the fundamental theorem of calculus due to the lack of an elementary antiderivative for the integrand, as the sine integral , an ...