When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graham's law - Wikipedia

    en.wikipedia.org/wiki/Graham's_law

    M 2 is the molar mass of gas 2. Graham's law states that the rate of diffusion or of effusion of a gas is inversely proportional to the square root of its molecular weight. Thus, if the molecular weight of one gas is four times that of another, it would diffuse through a porous plug or escape through a small pinhole in a vessel at half the rate ...

  3. Dumas method of molecular weight determination - Wikipedia

    en.wikipedia.org/wiki/Dumas_method_of_molecular...

    where the pressure, p, is the atmospheric pressure, V is the measured volume of the vessel, T is the absolute temperature of the hot bath, and R is the gas constant. The molecular weight of the chemical is then simply the mass in grams of the vapor within the vessel divided by the calculated number of mole.

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Download QR code; Print/export ... Ideal gas equations Physical situation Nomenclature Equations Ideal gas law: ... M m = molar mass

  5. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    It is an equation of state that relates the pressure, temperature, and molar volume in a fluid. The equation modifies the ideal gas law in two ways: first, it considers particles to have a finite diameter (whereas an ideal gas consists of point particles); second, its particles interact with each other (unlike an ideal gas, whose particles move ...

  6. Molar mass - Wikipedia

    en.wikipedia.org/wiki/Molar_mass

    In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.

  7. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    How much gas is present could be specified by giving the mass instead of the chemical amount of gas. Therefore, an alternative form of the ideal gas law may be useful. The chemical amount, n (in moles), is equal to total mass of the gas (m) (in kilograms) divided by the molar mass, M (in kilograms per mole): =.

  8. Hertz–Knudsen equation - Wikipedia

    en.wikipedia.org/wiki/Hertz–Knudsen_equation

    Number of gas molecules t: Time (in s) φ: Flux of the gas molecules (in m −2 s −1) α: Anomalous evaporation coefficient, 0 ≤ α ≤ 1, to match experimental results to theoretical predictions (Knudsen noted that experimental fluxes are lower than theoretical fluxes) [3] p: The gas pressure (in Pa) M: Molar mass (in kg mol −1) m: Mass ...

  9. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    This is illustrated in the image here, where the balanced equation is: CH 4 (g) + 2 O 2 (g) → CO 2 (g) + 2 H 2 O (l) Here, one molecule of methane reacts with two molecules of oxygen gas to yield one molecule of carbon dioxide and two molecules of liquid water. This particular chemical equation is an example of complete combustion.