Search results
Results From The WOW.Com Content Network
Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample.The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample.
(1) The Type I bias equations 1.1 and 1.2 are not affected by the sample size n. (2) Eq(1.4) is a re-arrangement of the second term in Eq(1.3). (3) The Type II bias and the variance and standard deviation all decrease with increasing sample size, and they also decrease, for a given sample size, when x's standard deviation σ becomes small ...
The same is true for intervening variables (a variable in between the supposed cause (X) and the effect (Y)), and anteceding variables (a variable prior to the supposed cause (X) that is the true cause). When a third variable is involved and has not been controlled for, the relation is said to be a zero order relationship. In most practical ...
Here the independent variable is the dose and the dependent variable is the frequency/intensity of symptoms. Effect of temperature on pigmentation: In measuring the amount of color removed from beetroot samples at different temperatures, temperature is the independent variable and amount of pigment removed is the dependent variable.
Another example might be linear regression with unknown variance in the explanatory variable (the independent variable): its variance is a nuisance parameter that must be accounted for to derive an accurate interval estimate of the regression slope, calculate p-values, hypothesis test on the slope's value; see regression dilution.
A simple example arises where the quantity to be estimated is the population mean, in which case a natural estimate is the sample mean. Similarly, the sample variance can be used to estimate the population variance. A confidence interval for the true mean can be constructed centered on the sample mean with a width which is a multiple of the ...
Let X 1, X 2, ..., X n be independent, identically distributed normal random variables with mean μ and variance σ 2.. Then with respect to the parameter μ, one can show that ^ =, the sample mean, is a complete and sufficient statistic – it is all the information one can derive to estimate μ, and no more – and
Since the sample mean and variance are independent, and the sum of normally distributed variables is also normal, we get that: ^ + ˙ (+, + ()) Based on the above, standard confidence intervals for + can be constructed (using a Pivotal quantity) as: ^ + + And since confidence intervals are preserved for monotonic transformations, we get that