Search results
Results From The WOW.Com Content Network
When an element of mass is offset from the axis of rotation, centrifugal force will tend to pull the mass outward. The elastic properties of the shaft will act to restore the “straightness”. If the frequency of rotation is equal to one of the resonant frequencies of the shaft, whirling will occur. In order to save the machine from failure ...
Stiffness of the shaft and its support; Total mass of shaft and attached parts; Unbalance of the mass with respect to the axis of rotation; The amount of damping in the system; In general, it is necessary to calculate the critical speed of a rotating shaft, such as a fan shaft, in order to avoid issues with noise and vibration.
r is the shaft radius c is the radial clearance μ is the absolute viscosity of the lubricant N is the speed of the rotating shaft in rev/s P is the load per unit of projected bearing area. The second part of the equation is seen to be the Hersey number. However, an alternative definition for S is used in some texts based on angular velocity: [2]
The affinity laws (also known as the "Fan Laws" or "Pump Laws") for pumps/fans are used in hydraulics, hydronics and/or HVAC to express the relationship between variables involved in pump or fan performance (such as head, volumetric flow rate, shaft speed) and power. They apply to pumps, fans, and hydraulic turbines. In these rotary implements ...
Fig. 2: Column effective length factors for Euler's critical load. In practical design, it is recommended to increase the factors as shown above. The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only.
A Rzeppa-type CV joint. A constant-velocity joint (also called a CV joint and homokinetic joint) is a mechanical coupling which allows the shafts to rotate freely (without an appreciable increase in friction or backlash) and compensates for the angle between the two shafts, within a certain range, to maintain the same velocity.
The following stresses are induced in the shafts. Shear stresses due to the transmission of torque (due to torsional load). Bending stresses (tensile or compressive) due to the forces acting upon the machine elements like gears and pulleys as well as the self weight of the shaft. Stresses due to combined torsional and bending loads.
In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line.