When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan , who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.

  3. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10 −23 J K −1. The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).

  4. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    The solution of the above integral yields a remarkably elegant equation for the total emissive power of a blackbody, the Stefan-Boltzmann law, which is given as, = where is the Steffan-Boltzmann constant.

  5. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    However, because black-body radiation increases rapidly with temperature (as the fourth power of temperature, given by the Stefan–Boltzmann law), radiation pressure due to the temperature of a very hot object (or due to incoming black-body radiation from similarly hot surroundings) can become significant. This is important in stellar interiors.

  6. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.

  7. Planetary equilibrium temperature - Wikipedia

    en.wikipedia.org/wiki/Planetary_equilibrium...

    The planet has an albedo that depends on the characteristics of its surface and atmosphere, and therefore only absorbs a fraction of radiation. The planet absorbs the radiation that isn't reflected by the albedo, and heats up. One may assume that the planet radiates energy like a blackbody at some temperature according to the Stefan–Boltzmann ...

  8. Boltzmann's entropy formula - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_law

    Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:

  9. Effective temperature - Wikipedia

    en.wikipedia.org/wiki/Effective_temperature

    The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.