Search results
Results From The WOW.Com Content Network
An example of precession and nutation is the variation over time of the orientation of the axis of rotation of the Earth. This is important because the most commonly used frame of reference for measurement of the positions of astronomical objects is the Earth's equator — the so-called equatorial coordinate system .
The precession of Earth's axis was later explained by Newtonian physics. Being an oblate spheroid , Earth has a non-spherical shape, bulging outward at the equator. The gravitational tidal forces of the Moon and Sun apply torque to the equator, attempting to pull the equatorial bulge into the plane of the ecliptic , but instead causing it to ...
A pure nutation is a movement of a rotational axis such that the first Euler angle is constant. [citation needed] Therefore it can be seen that the circular red arrow in the diagram indicates the combined effects of precession and nutation, while nutation in the absence of precession would only change the tilt from vertical (second Euler angle).
Precessional movement of Earth. Earth rotates (white arrows) once a day around its rotational axis (red); this axis itself rotates slowly (white circle), completing a rotation in approximately 26,000 years [1] In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational ...
[2] [3] This wobble, which is an astronomical nutation, combines with another wobble with a period of six years, so that the total polar motion varies with a period of about 7 years. The Chandler wobble is an example of the kind of motion that can occur for a freely rotating object that is not a sphere; this is called a free nutation.
Due to the very slow pole motion of the Earth, the Celestial Ephemeris Pole (CEP, or celestial pole) does not stay still on the surface of the Earth.The Celestial Ephemeris Pole is calculated from observation data, and is averaged, so it differs from the instantaneous rotation axis by quasi-diurnal terms, which are as small as under 0.01" (see [6]).
For this reason, to simplify the description of Earth's orientation in astronomy and geodesy, it was conventional to chart the positions of the stars in the sky according to right ascension and declination, which are based on a frame of reference that follows Earth's precession, and to keep track of Earth's rotation, through sidereal time ...
Apsidal precession is considered positive when the orbit's axis rotates in the same direction as the orbital motion. An apsidal period is the time interval required for an orbit to precess through 360°, [2] which takes the Earth about 112,000 years and the Moon about 8.85 years. [3]