When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Learning rate - Wikipedia

    en.wikipedia.org/wiki/Learning_rate

    In the adaptive control literature, the learning rate is commonly referred to as gain. [2] In setting a learning rate, there is a trade-off between the rate of convergence and overshooting. While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that ...

  3. Talk:K-means clustering - Wikipedia

    en.wikipedia.org/wiki/Talk:K-means_clustering

    To briefly interrupt your fighting: Murphy (Machine Learning: A Probabilistic Perspective, 2012) does not require variance -> 0. He shows an equivalence of k-means to "hard EM" with arbitrary but fixed variance. See 11.4.2.5. --Chire 12:00, 3 December 2019 (UTC) @Chire: True, and thanks for the constructive contribution.

  4. Timeline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_machine_learning

    Bayesian methods are introduced for probabilistic inference in machine learning. [1] 1970s 'AI winter' caused by pessimism about machine learning effectiveness. 1980s: Rediscovery of backpropagation causes a resurgence in machine learning research. 1990s: Work on Machine learning shifts from a knowledge-driven approach to a data-driven approach.

  5. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    In the statistical learning theory framework, an algorithm is a strategy for choosing a function: given a training set = {(,), …, (,)} of inputs and their labels (the labels are usually ). Regularization strategies avoid overfitting by choosing a function that fits the data, but is not too complex.

  6. Temporal difference learning - Wikipedia

    en.wikipedia.org/wiki/Temporal_difference_learning

    Temporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo methods , and perform updates based on current estimates, like dynamic programming methods.

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Multiplicative weight update method - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_Weight...

    In this case, player allocates higher weight to the actions that had a better outcome and choose his strategy relying on these weights. In machine learning, Littlestone applied the earliest form of the multiplicative weights update rule in his famous winnow algorithm, which is similar to Minsky and Papert's earlier perceptron learning algorithm ...

  9. John Murphy (engineer) - Wikipedia

    en.wikipedia.org/wiki/John_Murphy_(engineer)

    John A. Murphy is an American inventor and computer engineer credited with inventing ARCNET, the first commercial networking system, in 1976. [1] He was working for Datapoint Corporation at the time. [ 2 ]