When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    Electric charge is a conserved property: the net charge of an isolated system, the quantity of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms ...

  3. Static electricity - Wikipedia

    en.wikipedia.org/wiki/Static_electricity

    The phenomenon of static electricity requires a separation of positive and negative charges. When two materials are in contact, electrons may move from one material to the other, which leaves an excess of positive charge on one material, and an equal negative charge on the other. When the materials are separated, they retain this charge imbalance.

  4. Chemical polarity - Wikipedia

    en.wikipedia.org/wiki/Chemical_polarity

    Two charges are present with a negative charge in the middle (red shade), and a positive charge at the ends (blue shade). In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end.

  5. Corona discharge - Wikipedia

    en.wikipedia.org/wiki/Corona_discharge

    This is determined by the polarity of the voltage on the highly curved electrode. If the curved electrode is positive with respect to the flat electrode, it has a positive corona; if it is negative, it has a negative corona. (See below for more details.) The physics of positive and negative coronas are strikingly different.

  6. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    Electric potential of separate positive and negative point charges shown as color range from magenta (+), through yellow (0), to cyan (−). Circular contours are equipotential lines. Electric field lines leave the positive charge and enter the negative charge.

  7. Electric current - Wikipedia

    en.wikipedia.org/wiki/Electric_current

    A flow of positive charges gives the same electric current, and has the same effect in a circuit, as an equal flow of negative charges in the opposite direction. Since current can be the flow of either positive or negative charges, or both, a convention is needed for the direction of current that is independent of the type of charge carriers ...

  8. Electric dipole moment - Wikipedia

    en.wikipedia.org/wiki/Electric_dipole_moment

    For two opposite charges, denoting the location of the positive charge of the pair as r + and the location of the negative charge as r −: = + = (+) = (+) =, showing that the dipole moment vector is directed from the negative charge to the positive charge because the position vector of a point is directed outward from the origin to that point.

  9. Depletion region - Wikipedia

    en.wikipedia.org/wiki/Depletion_region

    The principle of charge neutrality says the sum of positive charges must equal the sum of negative charges: + = +, where n and p are the number of free electrons and holes, and and are the number of ionized donors and acceptors "per unit of length", respectively.