Ads
related to: c++ pointers tutorial point
Search results
Results From The WOW.Com Content Network
Although function pointers in C and C++ can be implemented as simple addresses, so that typically sizeof(Fx)==sizeof(void *), member pointers in C++ are sometimes implemented as "fat pointers", typically two or three times the size of a simple function pointer, in order to deal with virtual methods and virtual inheritance [citation needed].
Smart pointers typically keep track of the memory they point to, and may also be used to manage other resources, such as network connections and file handles. Smart pointers were first popularized in the programming language C++ during the first half of the 1990s as rebuttal to criticisms of C++'s lack of automatic garbage collection. [1] [2]
The void pointer, or void*, is supported in ANSI C and C++ as a generic pointer type. A pointer to void can store the address of any object (not function), [a] and, in C, is implicitly converted to any other object pointer type on assignment, but it must be explicitly cast if dereferenced.
In the C++ programming language, auto_ptr is an obsolete smart pointer class template that was available in previous versions of the C++ standard library (declared in the <memory> header file), which provides some basic RAII features for C++ raw pointers. It has been replaced by the unique_ptr class.
The call to d->f1() passes a B1 pointer as a parameter. The call to d->f2() passes a B2 pointer as a parameter. This second call requires a fixup to produce the correct pointer. The location of B2::f2 is not in the virtual method table for D. By comparison, a call to d->fnonvirtual() is much simpler: (*
The d-pointer pattern is one of the implementations of the opaque pointer. It is commonly used in C++ classes due to its advantages (noted below). A d-pointer is a private data member of the class that points to an instance of a structure. This method allows class declarations to omit private data members, except for the d-pointer itself. [6]
To expose dangling pointer errors, one common programming technique is to set pointers to the null pointer or to an invalid address once the storage they point to has been released. When the null pointer is dereferenced (in most languages) the program will immediately terminate—there is no potential for data corruption or unpredictable behavior.
On many common platforms, this use of pointer punning can create problems if different pointers are aligned in machine-specific ways. Furthermore, pointers of different sizes can alias accesses to the same memory, causing problems that are unchecked by the compiler. Even when data size and pointer representation match, however, compilers can ...