When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factor analysis - Wikipedia

    en.wikipedia.org/wiki/Factor_analysis

    Canonical factor analysis, also called Rao's canonical factoring, is a different method of computing the same model as PCA, which uses the principal axis method. Canonical factor analysis seeks factors that have the highest canonical correlation with the observed variables. Canonical factor analysis is unaffected by arbitrary rescaling of the data.

  3. Exploratory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_factor_analysis

    Exploratory Factor Analysis Model. In multivariate statistics, exploratory factor analysis (EFA) is a statistical method used to uncover the underlying structure of a relatively large set of variables. EFA is a technique within factor analysis whose overarching goal is to identify the underlying relationships between measured variables. [1]

  4. Scree plot - Wikipedia

    en.wikipedia.org/wiki/Scree_plot

    In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal components in an analysis. [1] The scree plot is used to determine the number of factors to retain in an exploratory factor analysis (FA) or principal components to keep in a principal component analysis (PCA).

  5. Confirmatory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Confirmatory_factor_analysis

    In statistics, confirmatory factor analysis (CFA) is a special form of factor analysis, most commonly used in social science research. [1] It is used to test whether measures of a construct are consistent with a researcher's understanding of the nature of that construct (or factor). As such, the objective of confirmatory factor analysis is to ...

  6. Kaiser–Meyer–Olkin test - Wikipedia

    en.wikipedia.org/wiki/Kaiser–Meyer–Olkin_test

    The Kaiser–Meyer–Olkin (KMO) test is a statistical measure to determine how suited data is for factor analysis. The test measures sampling adequacy for each variable in the model and the complete model. The statistic is a measure of the proportion of variance among variables that might be common variance.

  7. Latent and observable variables - Wikipedia

    en.wikipedia.org/wiki/Latent_and_observable...

    Latent variables, as created by factor analytic methods, generally represent "shared" variance, or the degree to which variables "move" together. Variables that have no correlation cannot result in a latent construct based on the common factor model. [5] The "Big Five personality traits" have been inferred using factor analysis. extraversion [6]

  8. Multiple factor analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_factor_analysis

    Multiple factor analysis (MFA) is a factorial method [1] devoted to the study of tables in which a group of individuals is described by a set of variables (quantitative and / or qualitative) structured in groups.

  9. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    This is the aim of multiple factor analysis which balances the different issues (i.e. the different groups of variables) within a global analysis and provides, beyond the classical results of factorial analysis (mainly graphics of individuals and of categories), several results (indicators and graphics) specific of the group structure.