Search results
Results From The WOW.Com Content Network
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. 1 / 8 = 1 / 2 3 . In Unicode, precomposed fraction characters are in the Number Forms block.
For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator ...
For the folded general continued fractions of both expressions, the rate convergence μ = (3 − √ 8) 2 = 17 − √ 288 ≈ 0.02943725, hence 1 / μ = (3 + √ 8) 2 = 17 + √ 288 ≈ 33.97056, whose common logarithm is 1.531... ≈ 26 / 17 > 3 / 2 , thus adding at least three digits per two terms. This is because the ...
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred to by using ordinal numbers, as in fourth root, twentieth root, etc. For example: 2 is a square root of 4, since 2 2 = 4. −2 is also a square root of 4, since (−2) 2 = 4.
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0 , a mathematical truth. But the same substitution applied to the original equation results in x /6 + 0/0 = 1 , which is mathematically meaningless .
The factor x 2 − 4x + 8 is irreducible over the reals, as its discriminant (−4) 2 − 4×8 = −16 is negative. Thus the partial fraction decomposition over the reals has the shape Thus the partial fraction decomposition over the reals has the shape
If x 2 is the remaining fraction after this step of the greedy expansion, it satisfies the equation P 1 (x 2 + 1 / 2 ) = 0, which can be expanded as P 2 (x 2) = 4x 2 2 + 8x 2 − 1 = 0. Since P 2 (x) < 0 for x = 1 / 9 , and P 2 (x) > 0 for all x > 1 / 8 , the next term in the greedy expansion is 1 / 9 .