When.com Web Search

  1. Ad

    related to: what is the definition of compatible numbers in algebra 1 is based

Search results

  1. Results From The WOW.Com Content Network
  2. Comparability - Wikipedia

    en.wikipedia.org/wiki/Comparability

    Hasse diagram of the natural numbers, partially ordered by "x≤y if x divides y".The numbers 4 and 6 are incomparable, since neither divides the other. In mathematics, two elements x and y of a set P are said to be comparable with respect to a binary relation ≤ if at least one of x ≤ y or y ≤ x is true.

  3. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For example, 7 ≥ 5 but not 5 ≥ 7. The relation "has a common factor greater than 1 with" between natural numbers greater than 1, is reflexive and symmetric, but not transitive. For example, the natural numbers 2 and 6 have a common factor greater than 1 ...

  4. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    Equinumerosity is compatible with the basic set operations in a way that allows the definition of cardinal arithmetic. [1] Specifically, equinumerosity is compatible with disjoint unions: Given four sets A, B, C and D with A and C on the one hand and B and D on the other hand pairwise disjoint and with A ~ B and C ~ D then A ∪ C ~ B ∪ D.

  5. Tolerance relation - Wikipedia

    en.wikipedia.org/wiki/Tolerance_relation

    In universal algebra and lattice theory, a tolerance relation on an algebraic structure is a reflexive symmetric relation that is compatible with all operations of the structure. Thus a tolerance is like a congruence , except that the assumption of transitivity is dropped. [ 1 ]

  6. Algebra - Wikipedia

    en.wikipedia.org/wiki/Algebra

    Algebra is the branch of mathematics that studies algebraic structures and the operations they use. [1] An algebraic structure is a non-empty set of mathematical objects, such as the integers, together with algebraic operations defined on that set, like addition and multiplication.

  7. Algebraic structure - Wikipedia

    en.wikipedia.org/wiki/Algebraic_structure

    These equations induce equivalence classes on the free algebra; the quotient algebra then has the algebraic structure of a group. Some structures do not form varieties, because either: It is necessary that 0 ≠ 1, 0 being the additive identity element and 1 being a multiplicative identity element, but this is a nonidentity;

  8. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. [1]

  9. Mathematical coincidence - Wikipedia

    en.wikipedia.org/wiki/Mathematical_coincidence

    That is, where m is the number of miles, k is the number of kilometres and e is Euler's number. A density of one ounce per cubic foot is very close to one kilogram per cubic metre: 1 oz/ft 3 = 1 oz × 0.028349523125 kg/oz / (1 ft × 0.3048 m/ft) 3 ≈ 1.0012 kg/m 3 .